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EXPANDED ABSTRACT

Two algorithms for obtaining static contact solutions are described in this
presentation. Although they were derived for contact problems involving specific
structures (a tire and a solid rubber cylinder), they are sufficiently general to
be applied to other shell-of~revolution and solid-body contact problems.

The shell-of-revolution contact algorithm is a method of obtaining a point
load influence coefficient matrix for the portion of shell surface that is ex-
pected to carry a contact load. If the shell is sufficiently linear with respect to
contact loading, a single influence coefficient matrix can be used to obtain a good
approximation of the contact pressure distribution. Otherwise, the matrix will be
updated to reflect nonlinear load-deflection behavior.

The solid-body contact algorithm utilizes a Lagrange multiplier to include the
contact constraint in a potential energy functional. The solution is found by
applying the principle of minimum potential energy. The Lagrange multiplier is
identified as the contact load resultant for a specific deflection.

At present, only frictionless contact solutions have been obtained with these
algorithms. A sliding tread element has been developed to calculate friction shear
force in the contact region of the rolling shell-of-revolution tire model. This
element allows a relatively general, non-Coulomb, friction law to be specified for
the contact interface. It has the added advantage of allowing friction to be cal-
culated in the continuous interface and, when coupled with the solid-body contact
algorithm, will permit analytic investigation of various continuum friction theories
that have been proposed.

The outline of future directions for the development of contact solution
algorithms is:

I. SHELL-OF-REVOLUTION CONTACT ALGORITHM
II. SOLID-BODY CONTACT ALGORITHM
IIT. STATIC AND ROLLING CONTACT FRICTION
IV. FUTURE DIRECTIONS FOR CONTACT SOLUTION ALGORITHMS
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I. SHELL-OF-REVOLUTION CONTACT ALGORITHM

A shell whose geometry and material properties are axisymmetric can be eco-
nomically modeled by shell-of-revolution finite elements. The SAMMSOR/SNASOR pro-
grams (refs. 1,2), for example, permit nonlinear behavior of orthotropic shells of
revolution to be calculated, including response to nonaxisymmetric loads. The
algorithm described here was developed to calculate the shell deflection in response
to a nodal point load, utilizing the calculated response to a sequence of harmoni-
cally varying ring loads on the node. The point load solution is then used to con-
struct an influence coefficient matrix, from which the shell contact solution is
obtained.

292



FINITE-ELEMENT TIRE MODEL

The tire is modeled here by an assembly of axisymmetric shell elements con-
nected to form a meridian of arbitrary curvature and following the carcass mid-
surface. The elements are homogeneous orthotropic, with moduli determined by the
ply structure of a particular tire. Detalils of this model are given in reference 3.
If the deformation is symmetric about the wheel plane only one-half of the meridian
is modeled, as shown in figure 1. The finite elements are joined at nodal circles,
referred to here as nodes. Node 12 in figure 1 is located at the tire bead and is
given in built-in end condition.

Figure 1
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SINGLE HARMONIC RING LOADS

The finite-element tire model will respond to single harmonic ring loads on
the nodal circles in addition to a uniform inflation pressure load. An approxi-
mately linear ring load-deflection response is obtained when an individual ring load
is applied to any node of the pressurized tire model. An example ring load-
deflection calculation for a passenger tire model is shown in figure 2. A harmonic
sequence of stiffness matrices is obtained by applying a sequence of single harmonic
ring loads to each of the nodes that may be in the tire-pavement contact region.
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SINGLE HARMONIC RING LOADS APPLIED TO A FINITE-ELEMENT NODE

Figure 2
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TRANSFER FUNCTION DEFINITION

As a consequence of the linearity of the ring load-deflection response, the
application of a single harmonic ring load produces a displacement field that
varies circumferentially in the same harmonic as the applied ring load. The defini-
tion of the transfer function T, as the ratio of theoutput and input amplitudes
is given below (ref. 4). Since each node responds differently, a transfer function
matrix T4y |, is used to store the stiffness information generated by the ring loads.
The partitions of this matrix are determined by the direction of the ring load. (Fig. 3).
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POINT LOAD VECTOR {p} AND THE DISCRETE FOURIER TRANSFORM (DFT)

This application of the discrete Fourier transform uses an even number of
points (N), equally spaced around the circumference. The example shown in figure
4 uses N=8 points. A unit load is applied at any point, say point 0. The DFT
of the load vector yields a set of N coefficients, G., which are approximate values
of the coefficients of the conventional Fourier series defined on the continuous
interval 0 < 6 < 27 and representing the unit point load. The point load is
applied, sequentially, in the radial, axial, and circumferential directions.

INFLUENCE COEFFICIENT GENERATION

{p}=11,0,0,0,0,0,0, 0} 1load vector

N-1 . .
= l k - ‘12'"/N
DFT Gj N Eg% gkwg W o=e

g = {P}. &g T 0T, N

Figure 4
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INVERSE DISCRETE FOURIER TRANSFORM (IDFT) AND THE INFLUENCE COEFFICIENTS

Having the unit point load represented by a conventional Fourier series, whose
coefficients a, are approximately given by the DFT coefficients, the transfer
functions Tjk|n are applied, on each harmonic, to obtain the coefficients b
Fourier series representing the response of the nodal circle to the unit point
load. The inverse discrete Fourier transform is then used to evaluate the dis-
placements, u_, at the N points. These displacements are the elements of the

influence coe?ficient matrix [Aijkﬂ]' (Fig. 5).
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The influence coefficient matrix relates the radial, axial, and circumferen-

INFLUENCE COEFFICIENT MATRIX

tial components of the displacement of points on the tire surface to the radial,

axial, and circumferential components of load at these points.
partition, shown in figure 6, is used to obtain a solution for frictionless con-

The radial response

tact, in which the axial and circumferential force components are known to be zero.
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TOROIDAL SHELL CONTACT SCHEMATIC

A cylindrical coordinate system is used to locate points on the toroidal
surface. The coordinates r, 6, and z indicate the radial, circumferential, and
axial directions, respectively. The tire equator lies in the r-6 plane (wheel
plane) and a tire meridian is in an r-z plane.

After the inflation solution has been obtained, the tire model is deflected
against a frictionless, flat surface. The contacting surface is perpendicular
to the wheel plane and positioned at the specified loaded radius Rp, as shown
in figure 7. The vertical load and the contact pressure distribution are unknown,
a priori.

Figure 7
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DEFLECTED MERIDIAN

The deflected shape of the meridian passing through the center of contact is
shown in figure 8. This shape is calculated by the finite-element tire model for
the specified tire deflection of one inch. The tire load that will produce a one
inch tire deflection is calculated to be 10,590 1b. Figure 8 also shows the
meridian prior to inflation and the calculated shape of the meridian of the inflated
tire, prior to contact loading. These finite-element meridians follow the carcass
midsurface, as indicated in figure 1. Geometric and material property data on the
Space Shuttle nose gear tire wereused for the calculated results shown in figures

8, 9, and 10.
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CONTACT PRESSURE DISTRIBUTIONS

The static contact pressure values (psi) calculated for two different loads
on the Shuttle nose gear tire are shown in figure 9. The number of finite-element
points in the contact region increases as the tire load increases. A rough esti-
mate of the contact boundary is obtained by extrapolation of the pressure distri-
bution. Integration of the pressure distribution gives the tire load.
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TIRE LOAD VERSUS TIRE DEFLECTION

An important test of a tire model is its ability to calculate a static

load-deflection curve.

Figure 10 compares the load-deflection curve calculated

for the Shuttle nose gear tire with measured data for a similiar aircraft tire.
Although these are both 32 x 8.8 Type VII tires, constructional details can
alter the load-deflection curve (and many other aspects of tire behavior). The
cord used in the test tire is unknown and may be quite different from the nylon
cord in the Space Shuttle tire.
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ITI. SOLID-BODY CONTACT ALGORITHM

A solid body with a cylindrical surface is often loaded in contact against a
rigid surface. The contact load may revolve around the body, as in the case of
a roller or a solid tire, or may remain stationary if the cylinder is used as a
support cushion.

Interfacial friction, present in all contact problems, is currently an active
field of research. The study of frictional behavior is facilitated if the contact
region is relatively large, as is produced when the body is highly deformable.
This makes it easier to calculate distributions of normal pressure and tangential
motion (slip) in the interface. 1In the case of rubber contact, the behavior
deviates sufficiently from the Coulomb friction law that other, more physically
realistic laws, can be easily tested. Since friction is a microscopic phenomenon,
a contact solution giving continuous distributions of interfacial pressure and
slip is desirable for analytic purposes. The contact algorithm described here
provides a continuum solution for frictionless contact, the first step toward
analysis of friction in the continuous contact interface.
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A PLANE STRAIN CONTACT PROBLEM

An elastic semicylinder of radius R is bonded to a fixed surface, figure
11(a). A contact load is applied by a rigid plate that deflects the semicylinder
as shown in figure 11(b).

The problem is formulated in terms of cylindrical material coordinates
(r,0,z) which identify points in the undeformed body, B,. A point P, in B, is
located by Cartesian coordinates x, and x, axes shown in figure 11(a) and

x1= r cos B X, =r sin 6 X,= z

The contact load is assumed to produce a plane strain deformation. Point P,
moves to position P in the deformed body, B. Point P is located by the Cartesian
coordinates - With plane strain, y, = y,(r,08), y, = y,(r,0), and v, = Az
where A, = 1 is a specified constant extension ratio.

A x2

6=0 x;
(a)

Rigid
(8

(b) M

Figure 11
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GEOMETRIC DESCRIPTION

The metric tensors g:. and G;s, given below, completely describe the elastic
ij 1]

semicylinder before and after deformation. Since y, is known a priori, the
problem is solved by finding the functions y, (r,0) and y (r,8) which determine
Gij. The displacement field is not utilized in this formulation but it can, of
course, be found when X, and y; are known. (Fig. 12).

1 0 0 1 0
- 2 ij _ -2
gij 0 g 0 T
1 0 1
ya,l ya,l ya,l ya,z 0
G,. = y y vy v (implied sum
ij a,2 “a,l Os2 70l 2 0 with o = 1,2)
2
0 0 A3
L‘ Sl

The Green/Saint-Venant strain tensor components are defined as

= 4(G.. -
Bo B
Undeformed Deformed

Metric [gij] Metric [Gij]

Figure 12
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MATERTIAL DESCRIPTION

The material is assumed to be hyperelastic so that its constitutive properties
are contained in a strain energy density, W. Isotropy is also assumed. For
plane strain of an isotropic material, the strain energy is known to be a function
of only the first and third strain invarients, I, and I3 (ref. 5)

W= W(II,I3)

For general deformation, the strain invarients are given by
I.=gc, . I,= G/g
2
where g = det [gij] = r for the semicylinder and G = det [Gij].

When the material is also assumed to be incompressible (I; = 1) the constitutive
behavior is not completely determined by the strain energy density. Hydrostatic
pressure becomes an additional unknown, which can be determined as a Lagrange
multiplier (ref. 6). This difficulty is avoided if a compressible material model
is used.

The material description selected for the contact problem solved here is the
compressible neo-Hookean model developed for continuum rubber by Blatz and Ko
(ref. 7). The Blatz-Ko model may be expressed as

I%(l—k)
% 1 L k 3
W(I,T3) =%u (I, - 30y) + K| 5 -y + o1

where U is the classical shear modulus, K is the bulk modulus, and k is a parameter
related to atomic repulsion. When I, = 1, the Blatz-Ko model reduces to the
neo-Hookean model for incompressible material. For small strains it reduces to

the energy density giving Hooke's law for compressible isotropic material.
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CONTACT CONSTRAINT

The assumption of frictionless contact with a rigid surface, positioned per-
pendicular to the y, axis (see fig. 11(b)), implies a geometric constraint only on
the solution function y_(r,0). Within the contact region, whose extent is not
known a priori, the deformed surface is flat and it is known that y, = R
where Ry is the specified location of the contact surface. Outside the contact
region, and in the interior of B, the solution must satisfy y, < Rg. This in-
equality constrainton y_ is converted to an equality constraint by introducing a
new function s(r,0), de%ined by the following equation

y2-+ s = Rz (constraint equation)
which is valid everywhere on the boundary and in the interior of B. The function
s(r,0), called a slack variable, has been used previously in optimization problems
with an inequality constraint. Reference 8 gives several examples of the use of
slack variables.

The contact problem is solved by minimizing the strain energy in B, subject
to the constraint equation given above. Since plane strain is assumed, the energy
is uniform along the axis of the semicylinder. Using symmetry, integration of the
energy density is taken over one-half of the r-8 plane contained in Bo'

The constraint equation is brought into the energy density functional by

means of a Lagrange multiplier function A(r,0). The contact problem is then
governed by the following functional

I(yl’ yZ’ S, >\) =[/F(r’ e’ yl’ yz’ S’ )\) drde

F=i(y, o) +X(y, + s - Ry)

where

Although rW is positive definite, F is not positive definite due to the addi-
tion of the constraint. Therefore, I may only be regarded as being made sta-
tionary instead of minimized by equilibrium solution functions. The integral
of W, however, is minimized by the equilibrium solution and this is used as a
check during the solution finding process.

Through additional analysis (J. T. Tielking, Texas A and M University,
unpublished data) the Lagrange multiplier function is shown to be an unknown
constant, identified as the resultant load in the contact region. The constraint
condition may then be removed from the integral, the slack variable is no longer
needed, and the contact problem is now governed by

I(ya ,k) = /frW(ya ,B) drdd + X (y, (R,'IT/2)—R£)

The solution is obtained by finding ya(r,e) and the constant )\ which make
I(y,» A) stationary. (Fig. 13).
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Figure 13
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SOLUTION FUNCTIONS

The numerical solution is obtained by application of the principle of
stationary potential energy (ref. 6), using the functional I(ya, A) in which X is
an unknown constant. The solution functions y, are taken as two-dimensional

finite series
M N
_ 9 ij 0)
y, (r,8) =x,(r,6) + 255 7, (r,

i-1 j=1

M N
- 0) + b B (r,0)
y, (r,8) =x (r,0) TR AR
i=1  j=1

where a,, and b,, are unknown coefficients. The symmetry and geometric boundary
L. 1 . i . -
conditidds evidedt in figure 11 are met by

r' sin (236)

.vl” (r,6)

1]
y, (.8

ri sin [(23-1)6]

The above functions allow the energy density to be integrated, thereby re-
ducing the functional I to an algebraic function of the 2 XM x N + 1 unknown
constants a..,, b.., and A

1] 1]

I =1 (aij H bij D)

The functional I is made stationary by the constants obtained from the following
set of simultaneous nonlinear equations:

oI ol . s

5a~ =0 and ——— =10 for i=1,2,...,M and = 1,2, ..., N
ij ij

1

Y y, (R, m/2) - R.2 =0

This system is solved in an iterative manner by the Newton-Raphson method. Using
the starting values a,, = b,, = A = 0, five or six iterations (which give successive
corrections to these %&nstaégs) are usually sufficient. The iterations are con-
tinued until the corrections appear to have negligible effect on the solution

functions y, (r,0). The energy density is evaluated after each iteration to
check for minimization.

309



DEFORMATION SOLUTION

Numerical results have been obtained using material comnstants p = 75 psi
(shear modulus), K = 475,000 psi (bulk modulus), and k = 13.3 in the Blatz-Ko
model. The values of K and k are taken from reference 7 where they are shown to
give a good fit to hydrostatic compression data on Butyl tread rubber (polyiso-
butylene). The shear modulus is believed to be a realistic estimate, based on
Treloar's statement (ref. 9) that the shear modulus of rubber is lower than the
bulk modulus by a factor of about 10~.

The computer-generated drawing below shows coordinate circles and radii

before deformation (x, and x,, dashed lines) and the deformed configuration

(y1 and Yy solid lines) of these circles and radii. The deformation is pro-

duced by a 10-percent deflection of the contacting surface (shown dashed). The

deformation solution, y, (r,6) and y, (r,0), is obtained in a lé6-term series

| for each function; the strain energy is minimized by the coefficients a . and

bij for i=1,2,3,4 and j=1,2,3,4, found after six Newton-Raphson iteratioﬂs.
This computation took 30 seconds of CPU time on a mainframe computer (Amdahl
470/v8). The Lagrange multiplier obtained in this solution is A=93.1, inter-
preted as a 93.1 1b load needed for a 10-percent deflection if the semicylinder
extends 1 inch in the z-direction. (Fig. 14).

X, Yo ———=~— Undeflected

10% Deflection

Figure 14

‘ 310



IIT. STATIC AND ROLLING CONTACT FRICTION

Statie Contact Friction. A body is brought into static contact by motion
perpendicular to the contact plane. During this motion, the contact boundary
expands until the resultant of the normal contact pressure reaches equilibrium
with the external load applied to the body. As the contact region is formed, shear
forces are generated by tangential motion of contacting surface points. These
shear forces are frictional and transient, reaching equilibrium levels when the
body itself comes into equilibrium. Although the body may be assumed elastic, and
thus conservative, the frictional shear forces are not conservative.

The formidable problem of calculating a static contact solution including the
effect of friction is alleviated somewhat by assuming Coulomb's law of friction
is valid in the contact region. An algorithm for including Coulomb friction in
a static contact problem has been developed by Rothert et al. (ref. 10). Although
Coulomb friction may be taken for an approximate analysis of frictional contact,
mathematical and physical uncertainties arise when it is assumed. Nonclassical
friction laws have been proposed by Oden and his coworkers (e.g., ref. 11). Al-
though these appear to have been developed mainly for metals, they may be applic-
able to more deformable material such as rubber.

Rolling Contact Friction. This discussion is limited to steady rolling
under a constant load. Neglecting hysteretic effects in the body, the power in-
put to maintain steady rolling is balanced by the work rate of the friction forces
in the contact region. In steady rolling, a contact region, whose boundary is
fixed by the load, is continuously generated. The normal pressure and sliding
velocity at a given location within the contact boundary do not change with time
so steady-state frictional behavior is maintained. The rolling contact problem
with friction is therefore much easier to analyze and provides a mechanism for
the study of nonclassical friction theories. An algorithm for calculating friction
in the contact region of a tire rolling at constant velocity will be described
next.
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SLIDING TREAD MODEL

This is a tread element model developed to convert a frictionless rolling
contact solution into a solution for rolling contact with friction. The element
passes through the contact region with the velocity found for frictionless contact.
This is termed the carcass velocity, V., whose distribution is symmetric about the
center of the footprint as sketched below

entry exit

entry —> VC exit

7/ /7 /7 rd 7/ Vd

For a free-rolling tire, the amplitude of the footprint sliding velocity is
very small. At 60 mph (1056 ips), the peak V., is calculated (by the author) to
be about 50 ips in a frictionless footprint.

In free-rolling, the normal contact pressure distribution, p, is essentially
unchanged by friction. The sliding velocity distribution, however, is signifi-
cally altered in an interactive manner. A hysteretic theory of tire-pavement
friction proposed by Schapery (ref. 12) gives the dependence of the friction
force, Fg, on the actual sliding velocity, Vg, and normal pressure, p, at a
point in the contact region. This is expressed as

F.=-B sgn(Vs)!VS!a x Pb (hysteretic theory)
where a, b, and B are material friction properties. The sliding tread element
model, shown in figure 15(a), is viscoelastic with stiffness and damping parameters
K and c¢. Sliding friction, Fs, causes the element to deform, thereby influencing
the sliding velocity V. The following nonlinear differential equation is
integrated to calculate V.

st ) K(VC—VS) + CVc
dt dF
c +—2
av

In this equation, dFS/dVS is the rate of change of sliding friction with sliding
velocity. This can be obtained by differentiating the hysteretic theory given
above or measured experimentally. Footprint transit time, t, is taken as the

independent variable. The time is equivalent to location in the footprint for
steady rolling.
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Figure 15(b) shows a schematic diagram of the sliding tread model and its
function in converting a frictionless sliding velocity distribution into sliding
velocity influenced by friction.

Tire Carcass
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SLIDING
TREAD I
MODEL (o |
' Vo Ve = Ve
|
| .
- Vs |
———— o |
S ‘._t_1

/ 7/ 7 V4 7/ 7 7 7 7 7

FS = -B sgn(Vs) |v5| a

(a)
N =
|
| |
L

(b)
Figure 15
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IV. FUTURE DIRECTIONS FOR CONTACT SOLUTION ALGORITHMS

As in other areas of solid mechanics, future research on contact problems
will be directed towards obtaining solutions valid for large deformations. The
finite-element method seems particularly well suited for application to contact
problems and special elements have already been developed for this purpose. Con-
tinuum mechanics research on contact problems should not be neglected, however.

A large-deformation contact solution in terms of continuous functions will prove
valuable in the analysis of contact with friction and the assessment of friction
laws now being proposed for deformable bodies.

A true contact problem is one in which the contact boundary and interfacial
pressure distributions are unknown a priori. At present, it appears that such
problems will be displacement prescribed: Deflection of the body toward the
contact surface is specified and integration of the calculated normal component
of the contact pressure gives the resultant load. Some effort should be directed
towards a load-specified contact problem, perhaps utilizing the principle of
stationary complementary energy to calculate the interfacial pressure distribu-
tion subject to the prescribed load constraint. Validated solutions for fric-
tionless contact are essential prior to including the effect of friction on the
contact solution.

In the analysis of friction, it seems that the study of rolling contact as
a steady-state problem has much to offer. As friction is an interactive phe-
nomenon, at least in regard to sliding velocity, sophisticated algorithms are
needed to generate the frictional contact solution from the solution for fric-
tionless contact (which will undoubtably be the starting point).

The following schematic, figure 16, outlines a progression of research on
contact problems. Linear sliding contact is excluded from the outline as this
is usually a transient situation leading to accelerated wear and abrasion.
Much more will be gained by research focused on rolling contact which will, in
any case, include sliding.
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PROGRESSION OF RESEARCH ON FRICTIONAL CONTACT PROBLEMS
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Figure 16
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